Eilectron Spin Resonance of $\mathrm{CrO}_{4}{ }^{3-}$ in Strontium Chlcroapatite, $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$

M. GREENBLATT, ${ }^{*}$ J.-M. KUO, \dagger and J. H. PIFER \dagger
* Department of Chemistry and \dagger Department of Physics, Rutgers University, New Brunswick, New Jersey 08903

Received July 3, 1978

Abstract

The electron spin resonance of $\mathrm{CrO}_{4}{ }^{3-}$ has been studied at $4.2^{\circ} \mathrm{K}$ in single crystals of $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$. It is shown that strontium chloroapatite has the hexagonal $P 6_{3} / m$ structure down to $4.2^{\circ} \mathrm{K}$. No phase transition to the monoclinic $P 2_{1} / b$ symmetry, observed in the $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$ and $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}$ analogs, has been found in $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$. The principal values of g and A tensors are $g_{x}=1.9348, g_{y}=1.9430$, $g_{x}=1.9822, A_{x}=26.5 \times 10^{-4} \mathrm{~cm}^{-1}, A_{y}=22.1 \times 10^{-4} \mathrm{~cm}^{-1}$, and $A_{z}=6.7 \times 10^{-4} \mathrm{~cm}^{-1}$. The principal axes of g and A are found to be rotated by 8.6° relative to each other about the common y axis which is parallel to the crystallographic c axis. The ground state of the d^{1} electron is $d_{z}{ }^{2}$ with considerable admixture of the higher-level d orbitals. The difference in the orientation of the x and z principal axes of the g and A tensors is due to this admixture. Crystal field parameters are extracted assuming a distortion of the oxygen tetrahedron which leaves only $x z$ mirror plane $\left(C_{s}\right)$ symmetry. An angular dependence of the linewidth is observed which is attributed to a distribution of distortions within the crystal.

Introduction

This electron spin resonance study of $\mathrm{CrO}_{4}{ }^{3-}$ in strontium chloroapatite $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$ was undertaken as part of our ongoing research program to characterize the structural properties of apatites. Strontium is known to substitute for calcium in calcium hydroxide phosphate, $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}$, the major inorganic component of bone and teeth. It has been suggested that partial replacement of calcium by strontium in the apatite structure inhibits the formation of dental caries (1). There is substantial evidence that substitutional ions affect the physical properties of "biological apatite" through the local atomic changes they introduce in the crystal. Therefore, it is important to understand the structural differences between strontium and calcium apatites on an atomic scale.

The existence of a monoclinic $P 2_{1} / b$ phase in synthetic calcium chloroapatite has been demonstrated (2) by measurements at $4.2^{\circ} \mathrm{K}$ of the ESR spectra of $\mathrm{CrO}_{4}{ }^{3-}$ substituted in small quantities for the phosphate in single crystal $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$. Measurement of the angular dependence of the ESR spectra of chromium in the pentavalent state was thus shown to be an extremely sensitive probe for detecting small structural differences.

Experimental

Single crystals of $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}, \mathrm{CrO}_{4}\right)_{3} \mathrm{Cl}$ were flux grown in a manner similar to that used to prepare $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}, \mathrm{CrO}_{4}\right)_{3} \mathrm{Cl}$ (2). The crystals were in the shape of needlelike irregular hexagonal prisms of light green color. A single crystal of $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$ with about 0.5 mole $\% \mathrm{CrO}_{4}{ }^{3-}$ content was examined
and oriented by X-ray diffraction, which confirmed the formation of $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}, \mathrm{CrO}_{4}\right)_{3} \mathrm{Cl}$ in a hexagonal phase at room temperature. Electron spin resonance spectra were obtained as described previously (3). No ESR was observed at room temperature or at liquid N_{2} temperature, but sharp absorption lines were detected at $4.2^{\circ} \mathrm{K}$.

Results and Preliminary Analysis

The electron resonance spectra of the unpaired d electron on $\mathrm{CrO}_{4}{ }^{3-}$ substituted into $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$ show three angular dependent resonance lines plus weaker hyperfine lines (Fig. 1). The X-ray structure determination of $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$ has not been carried out, but $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}$ (4) has been found to be isomorphous with hexagonal $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}$, having $\mathrm{P6}_{3} / m$ symmetry. Assuming this symmetry for the $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$, there are six crystallographically equivalent $\mathrm{PO}_{4}{ }^{3-}$ tetrahedra in two sets of three on mirror planes at $z=\frac{1}{4}$ and $\frac{3}{4}\left(6(h)\right.$ in $\left.P 6_{3} / m\right)$. These tetrahedra occur in pairs that are related by inversion and cannot be distinguished by ESR. Thus in $P 6_{3} / m$ there are three magnetically nonequivalent ions, geometrically identical, but differing by the orientations of their electric axes with respect to the unique crystal directions.

In $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}, \mathrm{CrO}_{4}\right)_{3} \mathrm{Cl}$ the helium temperature ESR spectra were observed (2) to be split into six lines which indicated a phase transition from hexagonal $\mathrm{P6}_{3} / \mathrm{m}$ to monoclinic $P 2_{1} / b$ with six magnetically nonequivalent chromium sites. Subsequent X-ray studies by Mackie et al. (5) have shown that the monoclinic phase in $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$ is stable up to room temperature. Our failure to observe any splitting in $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}, \mathrm{CrO}_{4}\right)_{3} \mathrm{Cl}$ indicates that the hexagonal-to-monoclinic phase transition does not occur down to $4.2^{\circ} \mathrm{K}$.

Figure 2 shows the observed angular variations of the three lines as the magnetic field is rotated about the a, a^{*}, and c crystal axes. (a^{*} is the axis perpendicular to a and c.) The observed resonance field H has been converted to a g value using the relation $g=$ $h \nu / \beta_{\mathrm{e}} H$, where h is Planck's constant, β_{e} is the Bohr magneton, and ν is the microwave frequency. We have fit these data to a g tensor

$$
\begin{equation*}
g^{2}=g_{x}^{2} l^{2}+g_{y}^{2} m^{2}+g_{z}^{2} n^{2} \tag{1}
\end{equation*}
$$

where l, m, and n are the direction cosines of the magnetic field with respect to the principal axes of the g tensor. We find that g_{x} and g_{z} lie in the $a a^{*}$ mirror plane with g_{y} along the c axis and g_{z} is rotated an angle α away from the a^{*} axis for P_{I} [which is the phosphorus site at $x, y, \frac{1}{4}$ of $6(h)$ in $P 6_{3} / m$]

Fig. 1. First derivative of the electron spin resonance spectra for $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}, \mathrm{CrO}_{4}\right)_{3} \mathrm{Cl}$ for H lying in the plane $a a^{*}$.

Fig. 2. g value of the ESR absorption of $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}, \mathrm{CrO}_{4}\right)_{3} \mathrm{Cl}$ vs the angle between a crystallographic axis and the magnetic field. (a) Rotation about a axis, H parallel to a^{*} at $\theta=80^{\circ}$. (b) Rotation about a^{*} axis, H parallel to a at $\theta=79^{\circ}$. (c) Rotation about c axis, H parallel to a at $\theta=76^{\circ}$. , Experimental values; - , four-parameter fit as described in the text.
(4). For the other two P sites g_{z} is rotated by $\alpha+60$ and $\alpha+120$. The solid lines in Fig. 2 are obtained from Eq. (1) using the four parameters:

$$
\begin{aligned}
g_{x} & =1.9348 \pm 0.0003, \\
g_{y} & =1.9430 \pm 0.0003, \\
g_{z} & =1.9822 \pm 0.0003, \\
\alpha & =12.9 \pm 0.4^{\circ} .
\end{aligned}
$$

The maximum discrepancy between this four-parameter fit to all of the data and least-square fits to the individual lines is $\Delta g= \pm 0.0003$.

The hyperfine splitting was measured for the $m_{I}= \pm \frac{3}{2}$ transitions, and the data (Fig. 3) were fit to an expression (6) for $g A$ similar to Eq. (1). The effects of a slight misalignment of the crystal are clearly visible in Fig. 3. The solid lines in Fig. 3 were calculated using the four parameters:

$$
\begin{aligned}
\left|A_{x}\right| & =(26.5 \pm 0.5) \times 10^{-4} \mathrm{~cm}^{-1} \\
\left|A_{y}\right| & =(22.1 \pm 0.5) \times 10^{-4} \mathrm{~cm}^{-1} \\
\left|A_{z}\right| & =(6.7 \pm 0.5) \times 10^{-4} \mathrm{~cm}^{-1} \\
\phi & =8.6 \pm 2.0^{\circ}
\end{aligned}
$$

where ϕ is the angle A_{z} makes with g_{z}. A_{y} lies along the c axis. For $\mathrm{P}_{\mathrm{I}}, A_{z}$ makes an angle of 4° with the a axis. Figure 4 shows these angular relations and for comparison shows the location of the oxygens in the P_{I} tetrahedron in $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}$.

The linewidth of the ESR has an angular dependence that closely follows the g variation. Measurement ${ }^{1}$ of the linewidth is complicated by unresolved hyperfine lines near A_{z}, but the data are consistent with a linewidth of $1.9 \pm 0.5 \mathrm{G}$ when H is along the c axis (parallel with g_{y}) and $4.3 \pm 0.5 \mathrm{G}$ when H lies in the $a a^{*}$ plane.

[^0]

Fig. 3. Hyperfine constant (gauss) of ${ }^{53} \mathrm{Cr}$ in $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}, \mathrm{CrO}_{4}\right)_{3} \mathrm{Cl}$ vs the angle between a crystallographic axis and the magnetic field. (a) Rotation about a axis, H parallel to a^{*} at $\theta=80^{\circ}$. (b) Rotation about a^{*} axis, H parallel to a at $\theta=79^{\circ}$. (c) Rotation about c axis, H parallel to a at $\theta=76^{\circ}$. ©xperimental values; - four-parameter fit as described in the text.

Fig. 4. Orientation of the g and A tensors in the $a a^{*}$ plane of $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl} . g_{y}$ and A_{y} are perpendicular to the plane. The locations of the neighboring oxygens as determined by X rays for $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}$ are shown for comparison.

Theory and Discussion

The energy levels of the single d electron on $\mathrm{CrO}_{4}{ }^{3-}$ are split by the tetrahedral symmetry into a ground state doublet and a triplet separated by $\sim 10^{4} \mathrm{~cm}^{-1}$. Distortion of the phosphate tetrahedron by packing effects with neighboring ions in the apatite splits the doublet by an energy ε with either $d_{z^{2}}$ or $d_{x y}$ lying lower depending on the nature of the distortion.

The anisotropic g values we observe with $g_{x}, g_{y}<g_{z}$ are consistent with a $d_{z}{ }^{2}$ ground state with significant distortion (7). If the distortion leaves any symmetry element, the principle axes of the g tensor must be oriented in a manner consistent with that symmetry. For a $d_{z^{2}}{ }^{2}$ wavefunction the \hat{z} axis will point along the bisector of the angle between oxygens. For tetrahedral symmetry there are three possible orientations for \hat{z}. However, with distortion, the bisector which provides minimum overlap of $d_{z^{2}}$ with the oxygen
orbitals will be chosen. In the apatites the X-ray structure shows that to a first approximation the distortion of the $\mathrm{PO}_{4}{ }^{3-}$ is trigonal; the angles between O_{1} and the other oxygens are larger than 109.5°, and the remaining three $\mathrm{O}-\mathrm{O}$ angles are smaller. \hat{z} will then bisect the largest of the angles less than 109.5°. For $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}$ the X -ray data show (4) that \hat{z} should bisect $\mathrm{O}_{\mathrm{III}}-\mathrm{O}_{\mathrm{III}}$. Assuming the same is true for the chloroapatite, we see in Fig. 4 that g is rotated by 12.9° from \hat{z} in the $a b$ plane. Thus the only element of symmetry left in the $\mathrm{CrO}_{4}{ }^{3-}$ tetrahedron in $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$ is a mirror plane $\left(C_{s}\right)$. In previous analyses $(2,8)$ of $\mathrm{CrO}_{4}{ }^{3-}$ in $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$ and $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$ high symmetry ($D_{2 d}$ or $C_{2 v}$) was assumed for the tetrahedron which amounts to ignoring the rotation of g_{z} from \hat{z}.

Ezzeh and McGarvey (9) have calculated the elements of the g and hyperfine tensors for a d^{1} electron in a $d_{z^{2}}$ ground state with $x z$ mirror symmetry and we shall follow their treatment. However, in their calculation they have neglected terms of order $\eta_{2}{ }^{2}$, where $\eta_{2}=\xi / \varepsilon$ is the ratio of the spin-orbit coupling parameter to the crystal field splitting of the doublet. In the present case $\eta_{2} \sim 0.4$ so we have extended the calculation to include all terms in η_{2}.

The crystal distortion admixes the d wavefunctions so with $x z$ mirror symmetry the doublet states are taken to be

$$
\begin{align*}
& \psi_{z^{2}}=a d_{z^{2}}+b d_{x^{2}-y^{2}}+c d_{x z} \tag{2}\\
& \psi_{x y}=e d_{x y}+f d_{y z} \tag{3}
\end{align*}
$$

where $a \sim 1, e \sim 1$, and b, c, and $f \ll 1$. The y axis is constrained to be perpendicular to the $x z$ mirror plane. There is no constraint on the orientation of \hat{z} in the plane so we choose the orientation for which $c=0$. Ezzeh and McGarvey (9) noted that for BaSeO_{4} this orientation corresponds to the principal axes of the hyperfine tensor. We find this is also true for the present case, although there is no requirement that it be generally true. Using
these coordinate axes we find the components of the g and A tensors to be

$$
\begin{align*}
g_{x x}= & g_{0}-6 f^{2} \eta_{2}-4 b^{2} \eta_{2}^{2} \\
& -6 \eta_{1}\left[1+\frac{2}{3^{1 / 2}} b\left(1+\eta_{2}\right)\right], \tag{4}\\
g_{y}= & g_{0}-\left(3 f^{2}+4 b^{2}\right) \eta_{2}^{2} \\
& -6 \eta_{3}\left[1-\frac{2}{3^{1 / 2}} b\left(1+\eta_{2}\right)\right], \tag{5}\\
g_{z z}= & g_{0}-8 b^{2} \eta_{2}-3 f^{2} \eta_{2}^{2}, \tag{6}\\
g_{x z}= & 2\left(3^{1 / 2}\right) b f \eta_{2}\left(2-\eta_{2}\right), \tag{7}\\
A_{x x}= & -K-\frac{2 P}{7}\left[1-2 b^{2}-\frac{3}{2} f^{2} \eta_{2}^{2}+21 f^{2} \eta_{2}(\}\right. \tag{8}\\
& +2\left(3^{1 / 2}\right) b\left(1+\eta_{2}\right)+\frac{3}{2} \eta_{3}+21 \eta_{1} \\
& \left.\times\left(1+\frac{2 b}{3^{1 / 2}}\right)+15\left(3^{1 / 2}\right) b \eta_{1} \eta_{2}\right], \\
A_{y}= & -K-\frac{2 P}{7}\left[1-2 b^{2}+\frac{3}{2} f^{2} \eta_{2}\right. \\
& -2\left(3^{1 / 2}\right) b\left(1+\eta_{2}\right)+21 \eta_{3}\left(1-\frac{2}{3^{1 / 2}} b\right) \\
& \left.+\frac{3}{2} \eta_{1}-15\left(3^{1 / 2}\right) b \eta_{1} \eta_{2}\right], \tag{9}\\
A_{z z}= & -K+\frac{4 P}{7}\left[1-2 b^{2}-2 b^{2} \eta_{2}^{2}\right. \\
A_{x z}= & -\frac{3^{1 / 2}}{7}-P f n_{2}\left[1-14 b-b \eta_{s}\right], \tag{10}\\
& \left.\frac{3}{4} \eta_{2} f^{2}-14 b^{2} \eta_{2}+\frac{3}{4}\left(\eta_{3}+\eta_{1}\right)\right], \tag{11}
\end{align*}
$$

where

$$
\begin{aligned}
g_{0} & =2.0023, \\
P & =g_{0} g_{\mathrm{N}} \beta_{\mathrm{e}} \beta_{\mathrm{N}}\left\langle r^{-3}\right\rangle_{\mathrm{av}}, \\
\eta_{1} & =\xi / \Delta E_{\mathrm{yz}}, \eta_{2}=\xi / \epsilon, \eta_{3}=\xi / \Delta E_{x z}
\end{aligned}
$$

K is the isotropic Fermi contact term, β_{e} and β_{N} are the Bohr and nuclear magnetons, and ξ is the spin-orbit coupling constant. We
have required A and g to be symmetric. In the calculation of g we have kept terms of order b^{2} or $b \eta_{3}$ and set $b \eta_{3}=b \eta_{1}$ but have made no assumption about the size of η_{2}. In the hyperfine components where the experimental errors are larger, we have dropped terms of order $b \eta_{3}$ except where the numerical coefficient in front is large. Note that g_{y} and A_{y} are principal values of the tensors but $g_{x x}, g_{z z}, A_{x x}$, and $A_{z z}$ are not unless $g_{x z}$ or $A_{x z}$ is zero. Experimentally it is a good approximation to take $g_{x x}$ (or $g_{z z}$) to be the value of g when H is along the $x(z)$ axis, which in the present case is the $x(z)$ principal axis of $A . g_{x z}$ is given by

$$
\begin{align*}
g_{x z} & =\frac{1}{2}\left(g_{z}-g_{x}\right) \sin 2 \phi \\
& =\frac{1}{2}\left(g_{z z}-g_{x x}\right) \tan 2 \phi, \tag{12}
\end{align*}
$$

where g_{z} and g_{x} are principal values and ϕ is the angle g_{z} is rotated from the z axis.

The seven unknown parameters ($\eta_{1}, \eta_{2}, \eta_{3}, K, P, b$, and f) can be obtained from Eqs. (2)-(10) and (12) by iteration. In order to obtain a fit it was necessary for all three A components to have the same sign. In order to obtain a negative P (since $g_{N}<0$ for ${ }^{53} \mathrm{Cr}$) we took $A_{z z}>0$. The results of the fit are given in Table I. The errors in the table are derived from the change in the fit when the input data are varied by their quoted errors. Most of the error comes from uncertainty in the components of A and in particular in the difference $A_{y}-A_{x}$.

The parameters in Table I clearly show the importance of assuming C_{s} symmetry. f

TABLE I
Crystal Field Parameters for $\mathrm{CrO}_{4}{ }^{3-}$ in $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$

$P\left(10^{-4} \mathrm{~cm}^{-1}\right)$	-19.6 ± 0.6
$K\left(10^{-4} \mathrm{~cm}^{-1}\right)$	-17.6 ± 0.3
$\boldsymbol{\eta}_{1}$	0.008 ± 0.001
$\boldsymbol{\eta}_{2}$	$0.4_{-0.1}^{+0.3}$
$\boldsymbol{\eta}_{3}$	0.0104 ± 0.0010
b	0.08 ± 0.02
f	$0.036_{-0.00}^{+0.007}$

would have been zero if $C_{2 v}$ symmetry had been assumed. The large value of η_{2} indicates small splitting of the ground state doublet due to the distortion of the tetrahedron. This does not imply that the distortion is small. X-ray studies of $\mathrm{PO}_{4}{ }^{3-}$ in various apatite structures show a basically trigonal distortion. But in $C_{3 v}$ the ground state doublet is not spiit aithough the triplet is. Thus the doublet splitting only reflects the additional distortion from $C_{3 v}$.

The trigonal distortion does show up in the value of $\eta_{3}-\eta_{1}$, which is much larger than one would expect if the triplet splitting were simply due to the distortion producing η_{2}. Optical absorption data are not available for comparison with our values of η_{1} and η_{3}. Optical data by Banks et al. (10) on $\mathrm{CrO}_{4}{ }^{3-}$ in $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$ show an absorption peak at $9100 \mathrm{~cm}^{-1}$ which can be associated with η_{1} and a series of peaks extending up to $20,000 \mathrm{~cm}^{-1}$. If the optical spectrum of $\mathrm{Sr}-$ apatite is similar, one of these peaks should correspond to η_{3}. However, identification is not straightforward since a molecular orbital calculation (9) of the effects of $d-p$ hybridization shows that the corrections to η_{1} and η_{3} are different. We have not attempted a MO calculation since the angular dependent line broadening, the small g_{N}, and low abundance of ${ }^{53} \mathrm{Cr}$ make the errors in our starting parameters too large to obtain meaningful results. Assuming $\Delta E_{y z}=$ $9100 \mathrm{~cm}^{-1}$ our fit yields $\xi=73 \mathrm{~cm}^{-1}$ for the spin orbit parameter and $\varepsilon=180 \mathrm{~cm}^{-1}$ for the doublet splitting which indicates the distortion of the CrO_{4}^{3-} tetrahedra in $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$ is smaller than in $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$ where $\varepsilon=350 \mathrm{~cm}^{-1}$.

The parameter

$$
\begin{align*}
\chi & =\frac{4 \pi}{S}\left(\psi\left|\sum_{i} \delta\left(r_{i}\right) S_{z i}\right| \psi\right) \\
& =-\frac{3}{2}\left(h c a_{0}^{3} / g_{0} g_{\mathrm{N}} \beta_{e} \beta_{\mathrm{N}}\right) K \tag{13}
\end{align*}
$$

defined by Abragam et al. (11) which characterizes the density of the unpaired spin
at the nucleus is easily calculated from K. We find $\chi=-2.62 \pm 0.06$ a.u. It has been found that χ is nearly constant for a given configuration of similar ligands $(12,13)$. Thus our results seem to be in disagreement with those of Banks et al. (8), who found $K=-10.3 \times 10^{-4} \mathrm{~cm}^{-1}, P=$ $-31.0 \times 10^{-4} \mathrm{~cm}^{-1}$, and $\chi=-1.54$ a.u. for $\mathrm{CrO}_{4}{ }^{3-}$ in $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$. Their analysis, however, was based on incomplete data and a fit for $A z>0$ may bc possible. On the other hand our value for P is much lower than the value of $P=-29.5 \times 10^{-4} \mathrm{~cm}^{-1}$ or $P=$ $-34.6 \times 10^{-4} \mathrm{~cm}^{-1}$ obtained for Cr^{+1} and Cr^{2+}, respectively, from Freeman and Watson's (14) unrestricted Hartree-Foch calculations of $\left\langle r^{-3}\right\rangle_{\mathrm{av}}$.

We attribute the angular dependence of the ESR line width to small variations in the size of the distortion of the tetrahedra from C_{3} v symmetry, possibly due to random strains. Substituting the values for b, f, and η_{2} from Table I into the terms involving these parameters in Eqs. (4)-(6):

$$
\begin{aligned}
-\Delta g_{x x} & =6 f^{2} \eta_{2}+4 b^{2} \eta_{2}^{2}=0.027 \\
-\Delta g_{y} & =3 f^{2} \eta_{2}^{2}+4 b^{2} \eta_{2}^{2}=0.011 \\
-\Delta g_{z z} & =8 b^{2} \eta_{2}+3 f^{2} \eta_{2}^{2}=0.027
\end{aligned}
$$

We assume each Δg changes by $\pm s \Delta g$ duc to random changes in η_{2}, b, and f. This shows up as a line broadening

$$
\Delta H_{s}=(2 s \Delta g) H / g
$$

where $H \simeq 3200 \mathrm{G}$ is the applied field. Then if ΔH_{0} is the intrinsic linewidth, the total angular dependent width is

$$
\Delta H=\Delta H_{0}+2 s \Delta g H / g .
$$

We can then fit the observed widths of 4.3 G in the $x z$ plane and 1.9 G along the $c(y)$ axis
with $s=4.5 \%$ and $\Delta H_{0}=0.4 \mathrm{G}$. Although a $\pm 4.5 \%$ distribution seems large it must be remembered this is not the total distortion but the additional distortion from trigonal symmetry.

Acknowledgments

This research received support from the Busch Memorial Fund and the Research Council, Rutgers University, New Brunswick, New Jersey. Helium gas supplied by the Office of Naval Research.

References

1. M. E. J. Curzon, B. L. Adkins, B. G. Bibby, and F. L. Losee, J. Dent. Res. 49, 526 (1970).
2. E. Banks, M. Greenblatt, and B. R. McGarvey, J. Solid State Chem. 3, 308 (1971).
3. M. Greenblatt and J. H. Pifer, J. Chem. Phys. 66, 559 (1977).
4. K. Sudarsanan and R. A. Young, Acta Crystallogr. Sect. B 28, 3668 (1972).
5. P. E. Mackie, J. C. Elliott, and R. A. Young, Acta Crystallogr. Sect. B 28, 1840 (1972).
6. A. Abragam and B. Bleaney, "Electron Paramagnetic Resonance of Transition Ions," p. 170, Oxford Univ. Press (Clarendon), London/New York (1970).
7. B, R. McGarvey, "Electron Spin Resonance of Metal Complexes," Plenum, New York (1969).
8. E. Banks, M. Greenblatt, and B. R. McGarvey, J. Chem. Phys. 47, 3772 (1967).
9. C. Ezzeh and B. R. McGarvey, J. Chem. Phys, 61, 2675 (1974).
10 . E. Banks, M. Greenblatt, and S. Holt, unpublished; C. Rosenblum and S. L. Holt, in "Transition Metal Chemistry" (R. Carlin, Ed.), Vol. 7, pp. 108-110, Dekker, New York, 1972.
10. A. Abragam, J. Horowitz, and M. H. L. Pryce, Proc. Roy. Soc. Ser. A 230, 169 (1955).
11. S. Geschwind, J. Appl. Phys. 36, 920 (1965).
12. B. R. McGarvey, J. Phys. Chem. 71, 51 (1967).
13. A. J. Freeman and R. E. Watson, in "Magnetism" (G. T. Rado and H. Suhl, Eds.), Vol. IIA, p. 167, Academic Press, New York (1965).

[^0]: ${ }^{1}$ In order to measure the weak hyperfine lines, the data were taken at high power where the central line is partially saturated and thus comparable in size to the hyperfine lines.

